蘑菇先生学习记

机器学习概念

介绍

机器学习是目前信息技术中最激动人心的方向之一。你或许每天都在不知不觉中使用了机器学习的算法。

  • 你打开谷歌、必应搜索到你需要的内容,正是因为他们有良好的学习算法,谷歌和微软实现了学习算法来排行网页。
  • 你用Facebook或苹果的图片分类程序他能认出你朋友的照片,这也是机器学习。
  • 每次您阅读您的电子邮件垃圾邮件筛选器,可以帮你过滤大量的垃圾邮件这也是一种学习算法。

那么,为什么机器学习如此受欢迎呢?
机器学习不只是用于人工智能领域。我们创造智能的机器,有很多基础的知识。比如,我们可以让机器找到A与B之间的最短路径,但我们仍然不知道怎么让机器做更有趣的事情,如web搜索、照片标记、反垃圾邮件。我们发现,唯一方法是让机器自己学习怎么来解决问题。所以,机器学习已经成为计算机的一个能力,现在它涉及到各个行业和基础科学中。

这里有一些机器学习的案例。

  • 数据挖掘。机器学习被用于数据挖掘的原因之一是网络和自动化技术的增长,这意味着,我们有史上最大的数据集比如说,大量的硅谷公司正在收集 web上的单击数据,也称为点击流数据,并尝试使用机器学习算法来分析数据,更好的了解用户,并为用户提供更好的服务。这在硅谷有巨大的市场。
  • 医疗记录。随着自动化的出现,我们现在有了电子医疗记录。如果我们可以把医疗记录变成医学知识,我们就可以更好地理解疾病。
  • 计算生物学。还是因为自动化技术,生物学家们收集的大量基因数据序列、DNA序列和等等,机器运行算法让我们更好地了解人类基因组,大家都知道这对人类意味着什么。
  • 工程方面。在工程的所有领域,我们有越来越大、越来越大的数据集,我们试图使用学习算法,来理解这些数据。另外,在机械应用中,有些人不能直接操作。例如,我已经在无人直升机领域工作了许多年。我们不知道如何写一段程序让直升机自己飞。我们唯一能做的就是让计算机自己学习如何驾驶直升机。
  • 手写识别。现在我们能够非常便宜地把信寄到这个美国甚至全世界的原因之一就是当你
    写一个像这样的信封,一种学习算法已经学会如何读你信封,它可以自动选择路径,所以我们只需要花几个美分把这封信寄到数千英里外。

  • 自然语言处理或计算机视觉。这些语言理解或图像理解都是属于AI领域。大部分的自然语言处理和大部分的计算机视觉,都应用了机器学习。学习算法还广泛用于自定制程序。每次你去亚马逊或 Netflix或 iTunes Genius,它都会给出其他电影或产品或音乐的建议,这是一种学习算法。仔细想一想,他们有百万的用户;但他们没有办法为百万用户,编写百万个不同程序。软件能给这些自定制的建议的唯一方法是通过学习你的行为,来为你定制服务。

机器学习概念

  • Arthur Samuel: 他定义机器学习为,在进行特定编程的情况下,给予计算机学习能力的领域。
    Samuel的定义可以回溯到50年代,他编写了一个西洋棋程序。这程序神奇之处在于,编程者自己并不是个下棋高手。但因为他太菜了,于是就通过编程,让西洋棋程序自己跟自己下了上万盘棋。通过观察哪种布局(棋盘位置)会赢,哪种布局会输,久而久之,这西洋棋程序明白了什么是好的布局,什么样是坏的布局。然后就牛逼大发了,程序通过学习后,玩西洋棋的水平超过了Samuel。这绝对是令人注目的成果。
  • Tom Mitchell: 一个程序被认为能从经验E中学习,解决任务T,达到性能度量值P,当且仅当,有了经验E后,经过P评判,程序在处理T时的性能有所提升。
    e就是程序上万次的自我练习的经验, 而任务t就是下棋。性能度量值p呢,就是它在与一些新的对手比赛时,赢得比赛的概率。

监督学习概念

  • 回归问题(房价预测):
    house_price_prediction
    我们应用学习算法,可以在这组数据中画一条直线,或者换句话说,拟合一条直线,根据这条线我们可以推测出,这套房子可能卖$150, 000,当然这不是唯一的算法。可能还有更好的,比如我们不用直线拟合这些数据,用二次方程去拟合可能效果会更好。根据二次方程的曲线,我们可以从这个点推测出,这套房子能卖接近$200, 000。
    可以看出,监督学习指的就是我们给学习算法一个数据集,这个数据集由“正确答案”组成。在房价的例子中,我们给了一系列房子的数据,我们给定数据集中每个样本的正确价格,即它们实际的售价然后运用学习算法,算出更多的正确答案。比如你朋友那个新房子的价格。用术语来讲,这叫做回归问题。我们试着推测出一个连续值的结果,即房子的价格。一般房子的价格会记到美分,所以房价实际上是一系列离散的值,但是我们通常又把房价看成实数,看成是标量,所以又把它看成一个连续的数值。
  • 分类问题(乳腺癌良性与否):
    breast_cancer
    假设说你想通过查看病历来推测乳腺癌良性与否,假如有人检测出乳腺肿瘤,恶性肿瘤有害并且十分危险,而良性的肿瘤危害就没那么大,所以人们显然会很在意这个问题。让我们来看一组数据:这个数据集中,横轴表示肿瘤的大小,纵轴上,我标出 1和 0表示是或者不是恶性肿瘤。我们之前见过的肿瘤,如果是恶性则记为 1,不是恶性,或者说良性记为 0。我有 5个良性肿瘤样本,在1的位置有5个恶性肿瘤样本。现在我们有一个朋友很不幸检查出乳腺肿瘤。假设说她的肿瘤大概这么大,那么机器学习的问题就在于,你能否估算出肿瘤是恶性的或是良性的概率。用术语来讲,这是一个分类问题。分类指的是,我们试着推测出离散的输出值:0或1良性或恶性,而事实上在分类问题中,输出可能不止两个值。比如说可能有三种乳腺癌,所以你希望预测离散输出 0、1、2、3。0代表良性,1表示第一类乳腺癌,2表示第二类癌症,3表示第三类,但这也是分类问题。因为这几个离散的输出分别对应良性,第一类第二类或者第三类癌症,在分类问题中我们可以用另一种方式绘制这些数据点。现在我用不同的符号来表示这些数据。既然我们把肿瘤的尺寸看做区分恶性或良性的特征,那么我可以这么画,我用不同的符号来表示良性和恶性肿瘤。或者说是负样本和正样本现在我们不全部画 X,良性的肿瘤改成用 O表示,恶性的继续用 X表示。来预测肿瘤的恶性与否。在其它一些机器学习问题中,可能会遇到不止一种特征。举个例子,我们不仅知道肿瘤的尺寸,还知道对应患者的年龄。在其他机器学习问题中,我们通常有更多的特征,比如肿块密度,肿瘤细胞尺寸的一致性和形状的一致性等等,还有一些其他的特征。这就是我们即将学到最有趣的学习算法之一。
  • 总结
    现在来回顾一下,这节课我们介绍了监督学习。其基本思想是,我们数据集中的每个样本都有相应的“正确答案”。再根据这些样本作出预测,就像房子和肿瘤的例子中做的那样。我们还介绍了回归问题,即通过回归来推出一个连续的输出,之后我们介绍了分类问题,其目标是推出一组离散的结果。

无监督学习概念

 在无监督学习中,我们已知的数据。看上去有点不一样,不同于监督学习的数据的样子,即无监督学习中没有任何的标签或者是有相同的标签或者就是没标签。所以我们已知数据集,却不知如何处理,也未告知每个数据点是什么。别的都不知道,就是一个数据集。你能从数据中找到某种结构吗?针对数据集,无监督学习就能判断出数据有两个不同的聚集簇。这是一个,那是另一个,二者不同。是的,无监督学习算法可能会把这些数据分成两个不同的簇。所以叫做聚类算法。事实证明,它能被用在很多地方。

  • 谷歌新闻
    聚类应用的一个例子就是在谷歌新闻中。如果你以前从来没见过它,你可以到这个 URL网址 news.google.com去看看。谷歌新闻每天都在,收集非常多,非常多的网络的新闻内容。它再将这些新闻分组,组成有关联的新闻。所以谷歌新闻做的就是搜索非常多的新闻事件,自动地把它们聚类到一起。所以,这些新闻事件全是同一主题的,所以显示到一起。事实证明,聚类算法和无监督学习算法同样还用在很多其它的问题上。
  • 基因学
    DNA
    一个 DNA微观数据的例子。基本思想是输入一组不同个体,对其中的每个个体,你要分析出它们是否有一个特定的基因。技术上,你要分析多少特定基因已经表达。所以这些颜色,红,绿,灰等等颜色,这些颜色展示了相应的程度,即不同的个体是否有着一个特定的基因。你能做的就是运行一个聚类算法,把个体聚类到不同的类或不同类型的组(人)……
  • 组织大型计算机集群:
    在大数据中心工作,那里有大型的计算机集群,他们想解决什么样的机器易于协同地工作,如果你能够让那些机器协同工作,你就能让你的数据中心工作得更高效。
  • 社交网络:
    所以已知你朋友的信息,比如你经常发email的,或是你Facebook的朋友、谷歌+圈子的朋友,我们能否自动地给出朋友的分组呢?即每组里的人们彼此都熟识,认识组里的所有人?
  • 市场分割
    许多公司有大型的数据库,存储消费者信息。所以,你能检索这些顾客数据集,自动地发现市场分类,并自动地把顾客划分到不同的细分市场中,你才能自动并更有效地销售或不同的细分市场一起进行销售。
  • 天文数据分析
    这些聚类算法给出了令人惊讶、有趣、有用的理论,解释了星系是如何诞生的。这些都是聚类的例子,聚类只是无监督学习中的一种。
  • 语音识别
    party
    鸡尾酒宴问题。嗯,你参加过鸡尾酒宴吧?你可以想像下,有个宴会房间里满是人,全部坐着,都在聊天,这么多人同时在聊天,声音彼此重叠,因为每个人都在说话,同一时间都在说话,你几乎听不到你面前那人的声音。所以,可能在一个这样的鸡尾酒宴中的两个人,他俩同时都在说话,假设现在是在个有些小的鸡尾酒宴中。我们放两个麦克风在房间中,因为这些麦克风在两个地方,离说话人的距离不同每个麦克风记录下不同的声音,虽然是同样的两个说话人。听起来像是份录音被叠加到一起,或是被归结到一起,产生了我们现在的这些录音。另外,这个算法还会区分出两个音频资源,这两个可以合成或合并成之前的录音,实际上,鸡尾酒算法的第一个输出结果是:1,2,3,4,5,6,7,8,9,10。
    看看这个无监督学习算法,实现这个得要多么的复杂,是吧?它似乎是这样,为了构建这个应用,完成这个音频处理似乎需要你去写大量的代码或链接到一堆的合成器JAVA库,处理音频的库,看上去绝对是个复杂的程序,去完成这个从音频中分离出音频。事实上,这个算法对应你刚才知道的那个问题的算法可以就用一行代码来完成.就是这里展示的代码:
    [W,s,v] = svd((repmat(sum(x.*x,1),size(x,1),1).*x)*x');
    研究人员花费了大量时间才最终实现这行代码。我不是说这个是简单的问题,但它证明了,当你使用正确的编程环境,许多学习算法是相当短的程序。所以,这也是为什么在本课中,我们打算使用 Octave编程环境。Octave,是免费的开源软件,使用一个像Octave或Matlab的工具,许多学习算法变得只有几行代码就可实现。

所以这个就是无监督学习,因为我们没有提前告知算法一些信息,比如,这是第一类的人,那些是第二类的人,还有第三类,等等。我们只是说,是的,这是有一堆数据。我不知道数据里面有什么。我不知道谁是什么类型。我甚至不知道人们有哪些不同的类型,这些类型又是什么。但你能自动地找到数据中的结构吗?就是说你要自动地聚类那些个体到各个类,我没法提前知道哪些是哪些。因为我们没有给算法正确答案来回应数据集中的数据,所以这就是无监督学习。

参考

斯坦福大学机器学习视频教程

坚持原创技术分享,您的支持将鼓励我继续创作!